
TERAGRID 2007 CONFERENCE, MADISON, WI 1

Clustering the Reliable File Transfer Service
Jim Basney and Patrick Duda

Abstract— As grids move from prototypes to testbeds to production infrastructure, grid resource providers are faced with the challenge of de-
livering reliable services to enable productive use of available resources. On high performance, distributed grids such as the TeraGrid, moving
large data sets to, from, and between supercomputing resources requires reliable data management services. The Reliable File Transfer (RFT)
Service in the Globus Toolkit Version 4 (GT4) provides this capability on the TeraGrid and other grids. We present modifications to RFT to support
clustering to achieve high availability in the presence of server failures, based on a standard Web service tiered architecture, leveraging the capa-
bilities of modern database systems. Clustering distributes the RFT service across multiple tightly coupled servers so that RFT can continue to
provide service even when individual components fail.

Index Terms— Globus Toolkit, Reliable File Transfer Service, High Availability, Cluster, Grid Computing, GridFTP.

—————————— ——————————

1 INTRODUCTION
The Reliable File Transfer (RFT) Service [3] in the Globus
Toolkit Version 4 (GT4) [4] manages GridFTP [1] operations
(file transfers and deletes) on behalf of a client. The client
submits a request to RFT for GridFTP operations to be per-
formed, and RFT takes responsibility for the completion of
the request, contacting GridFTP servers and restarting op-
erations as needed. RFT removes the requirement for cli-
ents to remain online throughout the duration of GridFTP
transfers and handles failures on the client’s behalf. In addi-
tion to handling GridFTP failures, RFT persists its own
state to allow it to recover from its own failures. At any
time, clients can contact RFT to obtain the status of their
requests.

While RFT provides significant improvement in reliabil-
ity over GridFTP alone, the RFT service is a single point of
failure vulnerable to network partition, power loss, system
crash, and resource exhaustion under heavy load. The cur-
rent RFT design does not support clustering or replication
for high availability, fail-over, and load balancing. In this
paper, we present our modifications to the GT4 RFT service
to enable clustering and replication.

This work enables RFT clusters to be combined with
GridFTP clusters to provide both high availability and high
performance. RFT clusters provide highly available control
for GridFTP transfers, while GridFTP clusters enable the
high performance data movement capabilities of the
GridFTP protocol via parallel TCP streams and data strip-
ing across servers [2].

2 RFT IMPLEMENTATION
Before describing our modifications to RFT, we first de-
scribe the existing RFT design and implementation in GT4,
focusing on those aspects that impact our modifications.

2.1 Delegation Service
RFT depends on the GT4 Delegation Service (DS) for cre-

dential management. Before submitting a request, the client
delegates credentials to the DS residing in the same Web
Services container as RFT. Then, the client includes the WS-
Addressing [6] Endpoint Reference (EPR) for the creden-
tials in its request to RFT, which RFT uses to obtain creden-
tials to perform the GridFTP operations on the client’s be-
half.

The DS stores its credentials in files on disk. The inter-
face for accessing the credentials is internal to the container,
so the DS and RFT must be co-located. A client must submit
its request to the RFT service in the same container as the
DS to which it delegated its credentials. Thus, any replica-
tion of the RFT service must either replicate the DS as well
or must remove this requirement for co-location (i.e., by
providing an external interface for communication between
RFT and DS services across containers).

To avoid credential expiration while transfers are in
progress, a client can delegate fresh credentials to the DS as
needed. RFT registers with the local DS to receive updated
credentials when they are renewed. This functionality
would also need to be maintained in a replicated scenario.

2.2 RFT Resource Properties
Clients can obtain the status of RFT transfers (Fin-
ished/Active/Failed/Restarted/Pending/Canceled state
plus bytes transfered and duration of transfer) via WS-
ResourceProperties [5] (RPs) and can subscribe to notifica-
tions of RP updates. These subscriptions are maintained by
the GT4 Core Persistence API, which stores subscription
data to files on disk. Replicating RFT must include replica-
tion of these RPs, making sure updates are propagated to
replicas, so clients can query any replica to obtain status
information, and notifications are issued once-and-only-
once.

2.3. RFT Database
RFT maintains the state of transfers in a DBMS accessed via
JDBC, with documented support for PostgreSQL and
MySQL. Multiple RFT instances require separate database
instances for two reasons. First, synchronization is per-
formed inside the RFT service rather than via database
locks, so database consistency would be a problem if multi-

————————————————
• Jim Basney, National Center for Supercomputing Applications, University

of Illinois, jbasney@ncsa.uiuc.edu.
• Patrick Duda, National Center for Supercomputing Applications, Univer-

sity of Illinois, pduda@ncsa.uiuc.edu.

2 TERAGRID 2007 CONFERENCE, MADISON, WI

ple RFT instances used the same database. Second, on re-
covery, the RFT service assumes ownership of all requests
in the database, which would cause it to take over requests
owned by other instances, initiating transfers and modify-
ing the associated transfer data, again resulting in consis-
tency problems.

In summary, RFT is a stateful web service that depends
on the stateful DS. RFT transfer state is persisted to data-
base, while RFT RP subscription state is persisted to disk.
DS state is also persisted to disk, and the DS must be able to
notify RFT when credentials are refreshed. To deploy an
RFT cluster, we must implement mechanisms to replicate
this state across RFT instances, handle notifications for
changes to DS and RFT resources, and implement transfer
restart/recovery across the RFT instances.

3. CLUSTERING APPROACH
To implement an RFT service cluster, we decided to lever-
age the clustering and consistency mechanisms provided
by modern DBMSs. We modified the existing RFT database
tables so they can be shared across multiple RFT instances,
and we modified the DS and RFT services to persist all data
to a shared database, rather than to disk. Using a single
mechanism for all data persistence simplifies software de-
sign and system management, and by leveraging the JDBC
standard, we have many DBMS options for deployment in
different environments. While we have thus far experi-
mented with MySQL, which supports both synchronous
and asynchronous replication, replication systems are also
available for PostgreSQL, and major commercial DBMSs
provide advanced mechanisms for clustering, replication,
and high availability.

Clients can submit requests and status queries to any
RFT and DS instance in the cluster. Standard load-
balancing techniques such as round-robin DNS or HTTP
proxy servers can be applied to target requests to the dif-
ferent instances. RFT requests can reference credentials
stored on any DS in the cluster, as any DS instance can re-
trieve the needed credentials from the shared database on
behalf of its local RFT instance. The shared DS database
table is indexed by EPR, providing a unique namespace for
each DS instance based on its IP address.

All RFT instances share a Request, Transfer, and Restart
table. The Request table is modified from the existing RFT
version, adding a container ID which indicates which RFT
instance currently owns a given Request entry and a start
time which indicates when the Request was started by the
client. A Request entry is initially owned by the RFT in-
stance where it was submitted and will only fail-over to
another RFT instance if it is not handled in a timely fashion.
The Transfer table contains the individual operations
(transfer or delete) that make up a request. It is unmodified.
The Restart table holds the restart markers for in-progress
transfers, and it is modified to include a timestamp to de-
tect stalled transfers requiring fail-over.

3.1. Fail-Over
Fail-over in our clustering approach is based on timeouts.
Periodically (default: 30 seconds), each RFT instance que-
ries the database for Requests that started a while ago (de-
fault: over 60 seconds) but have no recent Restart table en-
tries (default: under 60 seconds) and have not completed.
Under normal circumstances, this query will return no re-
sults, as all RFT instances are properly handling their Re-
quests. However, if any such stalled Requests are found,
indicating that one or more RFT instances is overloaded or
has failed, this instance obtains a write lock on the RFT ta-
bles, runs the query again, claims all resulting Requests for
itself, then releases the lock. This algorithm ensures via
DBMS locking that each stalled Request will be taken over
by at most one RFT instance.

When a Request fails-over to a new RFT instance, that
instance then continues the Request’s Transfers from where
they left off (using the stored Restart markers), and sends
notifications on updates to those Requests to any clients
that have registered subscriptions. Queries for the status of
a request can be satisfied by any RFT instance by simply
looking up the information in the shared RFTdatabase.

4. EVALUATION
To evaluate our clustering solution, we performed experi-
ments on a dedicated cluster, with a switched Gigabit
Ethernet network, running Red Hat Enterprise Linux AS
release 3. Each node had 2 GB RAM with dual 2GHz Intel
XEON CPUs with 512KB caches. We ran GT v4.0.3 Web
Services containers and GridFTP servers, with MySQL
Standard v5.0.27.

Our experiments focus on RFT performance. GridFTP
provides a variety of mechanisms for high performance
data movement, and RFT’s role is to provide reliable access
to the GridFTP capabilities without itself becoming a bot-
tleneck. We therefore perform our experiments with many
small files to maximize the load on RFT. If RFT performs
well under this extreme load, we can have confidence that
it will perform well under more typical loads consisting of
smaller numbers of large files, where GridFTP file transfer
time dominates performance.

Fig. 1. A simple fail-over example.

Our first experiments were to verify the basic functional-
ity of the clustering and fail-over implementation of our
modified RFT service running across 12 nodes of the clus-

BASNEY ET AL.: CLUSTERING THE RELIABLE FILE TRANSFER SERVICE 3

ter. In Figure 1, we see an example of fail-over in action. We
submitted an RFT Request to transfer 1000 1MB files, up to
5 at a time. 55 seconds later, we killed the Web Services
container to which we submitted the request, and the
GridFTP transfers ceased. 65 seconds after that, one of the
11 remaining RFT instances noticed that no activity had
occurred for this Request for over 60 seconds and took it
over, completing the remaining GridFTP transfers. During
this experiment, the RFT client received notifications for all
1000 transfers, which succeeded successfully. We have
tested the fail-over capability with up to 12 instances, with
multiple requests of different sizes, to verify correct func-
tionality.

We also performed experiments comparing the perform-
ance of our clustered RFT with the current GT4 RFT service.
We ran GT4 RFT instances on 10 nodes with a local MySQL
server to provide a performance baseline, then ran our
modified RFT instances on 10 nodes, connected to a MySQL
server on another node. To each RFT instance, we submit-
ted a single RFT Request to transfer 1000 1MB files, up to 5
at a time. We submit a large number of small transfers to
create a heavy database load, since the database is the criti-
cal component for our comparison. Since the load on the
shared MySQL server instance increases as the number of
active containers increases, we performed individual ex-
periments submitting simultaneous requests to 1–10 RFT
instances.

Fig. 2. A performance comparison.

As we see in Figure 2, the performance of the GT4 RFT
service did not change significantly as we submitted re-
quests to more containers simultaneously. This result is
expected, since the GT4 RFT instances run independently,
with their own local GridFTP servers and MySQL data-
bases. The small increase, as the number of containers is
increased, in the time to submit the requests and complete
the transfers, can be explained by the overhead of submit-
ting all requests from the cluster head node and the use of a
shared NFS filesystem for container logs. It took 4 seconds
to submit the requests, and 77–93 seconds to transfer the
1000 files on each node (11–13 GridFTP transfers per sec-
ond).

As expected, the MySQL database becomes a bottleneck

for the RFT cluster as the number of active RFT instances
increases. For a single node, performance for GT4 is the
same as for the RFT cluster (77 seconds for 1000 files, 13
transfers per second on average). For 2 nodes, the transfers
took 85 seconds rather than 82 (4% overhead), and 91 ver-
sus 86 seconds (6% overhead) for 3 nodes. For 10 nodes, the
transfers take approximately twice as long in the cluster
than they do for the independent RFT instances, but the
performance is still relatively good, at 52 transfers per sec-
ond for the 10 node cluster. The time to process each trans-
fer is insignificant in comparison with the transfer time of
large files in typical GridFTP workloads.

Finally, in our experiments, we found that RFT did not
handle DBMS errors well. If the RFT instance started up
before MySQL, or MySQL restarted, or the MySQL network
connection was otherwise severed, the RFT instance would
cease operation. We modified RFT to reconnect to the data-
base in these cases.

5. RELATED WORK
We believe that ours is the first effort to cluster GT4 web
services for high availability. We are aware of two related
projects.

The HAND [7] infrastructure implements a dynamic re-
deployment capability for services in the Globus Toolkit,
providing the ability to migrate services between contain-
ers, to maintain availability in the event of scheduled server
outages, but it does not address the management of persis-
tent service state or fail-over in the case of unplanned out-
ages.

The myGrid [8] project developed services based on
Apache WSRF to support DBMS persistence of WS-
ResourceProperties. In contrast, our DBMS persistence
support is specific to the RFT and DS services in the Globus
Toolkit using the GT4 Java WS Core. Investigating a gen-
eral-purpose DBMS-based persistence solution for GT4 is
an important area of future work.

6. CONCLUSION AND FUTURE WORK
We have presented our modifications to the GT4 RFT serv-
ice to enable clustering for load-balancing and fail-over.
Our initial experiments demonstrate the effectiveness of
our approach, with acceptable performance overheads for
small service clusters. We believe that clustering is a prom-
ising approach for application to other grid services.

We have submitted our modifications to the RFT devel-
opers, and we plan the following future work:
• Correctly handle replay of FTP deletes. The current

implementation assumes all operations are idempotent
and thus can be replayed on fail-over. This is sufficient
for transfer operations, but replayed deletes will cur-
rently fail with a ``no such file or directory'' error. We
plan to investigate the desirability of a two-phase com-
mit solution, compared to the optimistic approach of
simply ignoring this specific error.

• Implement credentialRefreshListener. The credential-

4 TERAGRID 2007 CONFERENCE, MADISON, WI

RefreshListener interface notifies RFT when a DS cre-
dential has been updated (for example, before it ex-
pires). It currently works only in the container to which
the credential was delegated, but other RFT instances in
the cluster may also need to receive this notification to
update their credentials for ongoing transfers. We plan
to use database mechanisms to detect credential updates
across the cluster to generate the needed notifications.

• Evaluate use of different DBMS solutions. To-date we
have experimented primarily with standalone MySQL
servers. Additional experiments using clustered data-
bases are needed to validate our design. Candidates in-
clude MySQL Cluster; PGCluster, Slony-I, and Postgres-
R for PostgreSQL; Oracle Real Application Clusters
(RAC); and Microsoft SQL Server High Availability.

• Investigate GT4 DBMS persistence in general. Rather
than developing DBMS interfaces separately for each
GT4 service, a general-purpose implementation of the
GT4 Core Persistence API that supports DBMS storage
and synchronization of WS-Resources would enable
clustering of multiple GT4 services.

• Investigate use of WS-Naming. While network trans-
port layer services such as DNS and HTTP proxy serv-
ers provide effective mechanisms for locating clustered
services, a Web Services approach based on WS-
Addressing can provide configurable and dynamic grid-
level or application-level resolvers for locating repli-
cated grid services. The OGSA Naming working group
in the Open Grid Forum is working to provide stan-
dards for WS-Addressing-based name resolution.

Please see http://grid.ncsa.uiuc.edu/dependable for the
source code modifications and additional supporting mate-
rials.

ACKNOWLEDGMENTS
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0426972.

Performance experiments were conducted on computers
at the Technology Research, Education, and Commerciali-
zation Center (TRECC), a program of the University of Illi-
nois at Urbana-Champaign, funded by the Office of Naval
Research and administered by the National Center for
Supercomputing Applications. We thank Tom Roney for
his assistance with the TRECC cluster.

We also thank Ravi Madduri from the Globus project for
answering our questions about RFT.

REFERENCES
[1] W. Allcock, “GridFTP Protocol Specification”, Global Grid Forum Rec-
ommendation GDF.20, March 2003.
[2] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I.
Raicu, I. Foster, “The Globus Striped GridFTP Framework and Server”, Pro-
ceedings of Super Computing 2005 (SC05), November 2005.
[3] W. Allcock, I. Foster, and R. Madduri, “Reliable Data Transport: A Criti-
cal Service for the Grid”, In Global Grid Forum Building Service Based Grids
Workshop, June 2004.
[4] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems”, In IFIP International Conference on Network and Parallel Computing,
pages 2–13. Springer-Verlag LNCS 3779, 2006.

[5] S. Graham and J. Treadwell, editors, “Web Services Resource Properties
1.2”, W3C, April 2006.
[6] M. Gudgin, M. Hadley, and T. Rogers, editors, “Web Services Addressing
1.0 – Core”, W3C, May 2006.
[7] L. Qi, H. Jin, I. Foster, and J. Gawor, “HAND: Highly Available Dynamic
Deployment Infrastructure for Globus Toolkit 4”, 2006.
[8] B. Wietrzyk and M. Radenkovic, “Supporting Semantic Life Science
Middleware with Web Service Resource Framework”, In Proceedings of the
UK e-Science All Hands Meeting, September 2005.

